Ствол мозга состоит из продолговатого мозга, моста, среднего и промежуточного мозга. Эта часть центральной нервной системы имеет следующие функции:
1) организация рефлексов, обеспечивающих подготовку и реализацию различных форм поведения;
2) проводниковая функция;
3) ассоциативная функция.
Функции продолговатого мозга:
1) рефлекторная функция;
2) сенсорная функция;
3) проводниковая функция;
4) автоматическая функция;
5) ассоциативная функция.
Рефлекторная функция продолговатого мозга.
Эта функция обеспечивается ядрами 5-10 пар черепно-мозговых нервов. Можно сказать, что продолговатый мозг выполняет главные (жизненно важные) рефлекторные функции:
1) жизненно важные рефлексы на сердце, сосуды, дыхание, ЖКТ;
2) защитные рефлексы: чихание, моргание, кашель, рвота, слёзоотделение и т.д.;
3) сложно координированные рефлексы жевания, глотания, сосания;
4) рефлексы, связанные с поддержанием позы, выпрямления и изменения положения тела в пространстве при движении человека.
В продолговатом мозге локализуются дыхательный (медиальные части ретикулярной формации) и сердечно-сосудистый центры. Они функционируют совместно со всеми нейронами ретикулярной формации, с гипоталамусом и другими вышележащими структурами мозга. Поэтому при возбуждении сердечно-сосудистого центра изменяется дыхание, тонус мышц кишечника, мочевого пузыря, бронхов и др. При повреждении этих центров, например, при вклинении мозга, человек может погибнуть.
Защитные рефлексы реализуются с рецепторов слизистых оболочек носоглотки, полости рта, гортани, глаз через афферентные ветви тройничного и языкоглоточного нервов, идущие в соответствующие чувствительные ядра продолговатого мозга. От этих ядер идут нервные импульсы к двигательным ядрам тройничного, лицевого, блуждающего, языкоглоточного, добавочного и подъязычного нервов, от которых по эфферентным нервам импульсы идут к соответсвующим эффекторам, реализующим защитные рефлексы.
Сложно координированные рефлексы реализуются точно так же, как и защитные, за счёт последовательно включённых мышечных групп. Так, при возбуждении рецепторов губ возникает рефлекс сосания. При этом по афферентным волокнам тройничного нерва возбуждение распространяется в продолговатый мозг, где переключается на эфферентные нейроны лицевого и подъязычного нервов. У новорождённых сосание – непроизвольный рефлекс. С возрастом за счёт формирования ассоциативных связей с корой головного мозга он попадает под её влияние и может произвольно управляться. Жевание как непроизвольный процесс может наблюдаться только у бульбарных животных (животные с сохранёнными продолговатым и спинным мозгом и удалёнными остальными отделами ЦНС). При раздражении рецепторов слизистой оболочки ротовой полости нервные импульсы по чувствительным волокнам тройничного нерва направляются к его чувствительным ядрам, а затем переключаются на мотонейроны моторных ядер тройничного и подъязычного нервов, от которых импульсы направляются к жевательным мышцам и мышцам языка. Глотание начинается от рецепторов слизистой оболочки ротовой полости, мягкого нёба. Возбуждение от этих рецепторов по афферентным волокнам тройничного, языкоглоточного и блуждающего нервов поступает в центр глотания продолговатого мозга, который обеспечивает строго координированную последовательность рефлекторного сокращения мышц, участвующих в этом акте. Центр глотания тесно связан с дыхательным центром – при глотании деятельность дыхательной мускулатуры тормозится.
Классификация рефлексов, поддерживающих позу человека по Магнусу:
1) статические (познотонические и выпрямительные);
2) статокинетические (нистагм, лифтные рефлексы).
Статические рефлексы обеспечивают в покое поддержание позы человека в пространстве. Они начинаются от вестибулярного аппарата, проприорецепторов глубоких мышц шеи, а также с рецепторов туловища при одностороннем раздражении.
Познотонические рефлексы (рефлексы положения) отвечают за поддержание горизонтальной, сидячей и вертикальной позы человека в спокойном состоянии. При разрушении лабиринтов внутреннего уха или наложении гипсовой повязки на шею эти рефлексы не осуществляются.
Выпрямительные рефлексы включаются при неудобном положении тела. Благодаря им человек принимает позу среднефизиологического покоя. Для осуществления этих рефлексов кроме ядер продолговатого мозга нужны ядра среднего мозга. Например, если сбросить кошку спиной вниз, то с рецепторов полукружных каналов импульсы передаются через продолговатый мозг на мышцы шеи, и голова поворачивается вниз, возбуждаются рецепторы глубоких мышц шеи, от которых импульсы идут к ядру Дейтерса продолговатого мозга, а от него по вестибулоспинальным путям к мотонейронам разгибателей спинного мозга, что приводит к сокращению мышц разгибателей, и кошка переворачивается в воздухе и приземляется на лапы. Этот выпрямительный рефлекс контролируется γ-нейронами спинного мозга.
Статокинетические рефлексы обеспечивают перераспределение тонуса мышц туловища и шеи для организации позы, соответствующей моменту прямолинейного или вращательного движения.
Нистагм (nystagmos, гр. – мигание) – это движение глаз (нистагм глаз) и головы (нистагм головы) в сторону, противоположную движению, а затем их возвращение в исходное положение. Например, если человек едет в поезде и при этом смотрит в окно, то его глаза и голова непроизвольно совершают эти движения. Если нистагм появляется у человека при отсутствии прямолинейного или вращательного движения, то это является серьёзным неврологическим симптомом.
Лифтные рефлексы проявляются при перемещении на скоростном лифте вверх или вниз. При подъёме вверх тонус мышц сгибателей ног повышается, и человек приседает. При спуске вниз возрастает тонус разгибателей. Для осуществления этих рефлексов необходимы ядра продолговатого и среднего мозга.
Сенсорная функция продолговатого мозга.
В сенсорных ядрах, расположенных в продолговатом мозге, происходит анализ силы и качества раздражений следующих видов чувствительности:
1) первичная чувствительность кожи лица (ядро тройничного нерва);
2) первичная рецепция звуковых сигналов (ядро улиткового нерва);
3) первичная рецепция вкуса (ядро языкоглоточного нерва);
4) первичная рецепция вестибулярных раздражений (верхнее вестибулярное ядро).
Далее из перечисленных ядер нервные импульсы передаются в подкорковые ядра для определения биологической значимости раздражений.
Проводниковая функция продолговатого мозга.
В продолговатом мозге берут начало:
1) оливоспинальный тракт;
2) ретикулоспинальный тракт;
3) вестибулоспинальный тракт.
Они обеспечивают тонус и координацию сокращения мышц.
Здесь заканчиваются:
1) нисходящий кортикоретикулярный путь;
2) восходящие пути Голля и Бурдаха.
Через продолговатый мозг транзитом проходят следующие восходящие и нисходящие пути спинного мозга:
1) спиноталамический путь;
2) кортикоспинальный путь;
3) руброспинальный путь.
Автоматическая функция продолговатого мозга.
Эта функция связана с надсегментарным уровнем продолговатого мозга, т.е. со структурами ретикулярной формации, а также ядрами Голля и Бурдаха – эти структуры, находясь в постоянном тонусе, контролируют автоматическую деятельность дыхательной, сердечно-сосудистой систем и регуляцию артериального давления.
Ассоциативная функция продолговатого мозга.
Ассоциативная функция продолговатого мозга заключается во взаимодействии его структур между собой, а также со спинным мозгом, подкорковыми ядрами и корой больших полушарий.
Функции среднего мозга:
1) сенсорная функция (анализ биологической значимости зрительной и звуковой информации);
2) проводниковая функция (проведение нервных импульсов по восходящим путям к таламусу, мозжечку и большому мозгу и нисходящим путям к продолговатому и спинному мозгу);
3) двигательная функция (реализуется за счёт ядер блокового, глазодвигательного нервов, красного ядра и чёрной субстанции);
4) рефлекторная функция (реализуется через структуры четверохолмия, которые являются функционально самостоятельными).
Пластинка четверохолмия включает в себя верхнее и нижнее двухолмие. Верхнее двухолмие является первичным центром зрения, здесь происходит переключение импульсов, поступающих от рецепторов глаза на нейроны, которые посылают свои сигналы в зрительную область коры, там находятся вторичные центры зрения – корковые. Верхнее двухолмие тесно связано с латеральными коленчатыми телами, которые уже относятся к промежуточному мозгу. Верхнее двухолмие осуществляет ориентировочные реакции на свет, т.е. содружественный поворот глаз и головы в сторону внезапно возникшего светового раздражителя, а также старт-рефлексы на свет, т.е. настораживание ушей, напряжение мышц, готовность к прыжку или бегству. Здесь же имеются центры аккомодации глаз, их конвергенции и реакции зрачка на свет.
Нижнее двухолмие осуществляет ориентировочные реакции на звук, т.е. здесь находятся первичные центры слуха. Аксоны этих нейронов направляются в висцеральную зону коры где находятся вторичные (корковые) центры слуха, эти ядра также участвуют в осуществлении старт-рефлексов на звук. В общем пластинка четверохолмия осуществляет сторожевые рефлексы, т.е. вздрагивание, настораживание, вскрикивание на сильный звуковой или световой раздражители, которые спарены с соответствующими вегетативными реакциями.
В чёрной субстанции находятся нейроны, которые осуществляют координацию рефлексов жевания и глотания, координацию мелких движений пальцев (игра на пианино, скрипке), обеспечивает пластический тонус человека, участвует в сокращении мимических мышц. При поражении нейронов чёрной субстанции (например, при атеросклерозе сосудов головного мозга) развивается паркинсонизм (тремор; амимия – маскообразное лицо; повышенное слюновыделение и др.), а также страдает эмоциональная сфера.
Красное ядро получает импульсы от мозжечка, моторной зоны коры (передняя центральная извилина) и ядер подкорки. Они, в свою очередь, через вестибулярное ядро Дейтерса и расположенную рядом ретикулярную формацию затормаживают a-мотонейроны разгибателей передних рогов спинного мозга. При повреждении красных ядер наступает децеребрационная ригидность (rigidus, лат. – окоченелый, негибкий). Децеребрация – это операция перерезки между верхними и нижними бугорками четверохолмия, тогда красное ядро остаётся выше перерезки. Это явление заключается в ригидности мышц-разгибателей. При этом у животного поднят хвост, запрокинута голова, разогнуты все конечности, и попытка их согнуть может привести к перелому конечностей. У человека наблюдается опистотонус, т.е. человек лежит, опираясь на затылок и пятки, но, так как сгибатели у человека сильнее разгибателей, его руки будут согнуты в локтях. Механизм этого явления состоит в следующем: красное ядро, а также мозжечок и вышележащие структуры тормозят ядро Дейтерса и находящуюся рядом ретикулярную формацию. Это обусловливает нормальное распределение мышечного тонуса между нейронами сгибателей и разгибателей. При разрушении красного ядра его торможение на ядро Дейтерса и ретикулярную формацию снимается, и возбудимость этих структур резко возрастает. В результате этого к a-мотонейронам разгибателей идёт повышенное количество нервных импульсов, и тонус мышц-разгибателей увеличивается. Таким образом, красное ядро вместе с вестибулярными ядрами регулирует распределение тонуса между сгибателями и разгибателями, а также осуществляет выпрямительные и статокинетические рефлексы.
Ретикулярная формация – это связанный практически со всеми структурами ЦНС комплекс полиморфных нейронов различных размеров с огромным количеством коллатералей и отростков, между которыми имеются тесные контакты в виде химических и электрических синапсов, расположенных от спинного мозга до неспецифических ядер таламуса.
До 1935 года учёные думали, что эти хаотически разбросанные по стволу мозга нейроны в виде сетчатого образования не выполняют никакой функции. Но в 1935 году Бремер поставил опыты с перерезками ствола мозга у кошки и вживлением микроэлектродов выше перерезки.
Первая перерезка производилась между передними и задними бугорками четверохолмия, в результате чего Бремер выключал основную массу РФ, и кошка засыпала. При этом на ЭЭГ записывался a-ритм – это называется реакцией синхронизации, так как биоэлектрическая активность коры имеет синхронизированный характер. При раздражении нейронов РФ выше перерезки кошка просыпалась (реакция пробуждения). При этом на ЭЭГ a-ритм сменялся b-ритмом, такая реакция называется реакцией десинхронизации, так как нарушается синхронизация потенциала действия в коре.
При перерезке ниже среднего мозга (т.е. при сохранении основной массы РФ) кошка бодрствует и на ЭЭГ пишется b-ритм. На основании этих опытов был сделан вывод, что РФ выполняет очень важную физиологическую функцию: поддерживает кору в бодрствующем состоянии. Если РФ выключена, наступает сон.
Дальнейшие исследования показали, что РФ получает импульсы от спинного мозга, мозжечка, промежуточного мозга, от базальных ядер и коры. В свою очередь она посылает импульсы в спинной мозг, к подкорке, к мозжечку, к гипоталамусу, лимбической системе и к коре. Основной функцией РФ является регуляция уровня активности коры большого мозга, мозжечка, таламуса и спинного мозга. Благодаря связям РФ с гипоталамусом, она участвует в регуляции вегетативных функций.
Генерализованный характер влияния РФ на многие структуры мозга дал основание считать её неспецифической системой.
Особенности нейронов РФ.
Нейроны РФ характеризуются рядом особенностей.
1. Большинство нейронов РФ имеет длинные дендриты и короткий аксон. Хотя существуют гигантские нейроны с длинным аксоном, образующий пути из РФ в другие области мозга.
2. Активность нейронов РФ различна. Среди них имеются нейроны как с постоянной ритмической активностью, не зависящей от поступающих сигналов, так и «молчащие» (специфические) нейроны, которые в покое не генерируют импульсов, но возбуждаются при стимуляции зрительных или слуховых рецепторов. Эти специфические нейроны обеспечивают быструю реакцию на внезапные, неопознанные сигналы.
3. На нейроны РФ конвергируют нервные импульсы от восходящих и нисходящих специфических путей, проходящих по стволу мозга и дающих сюда коллатерали. В свою очередь нейроны РФ сами образуют большое количество коллатералей и синапсов на нейронах различных отделов мозга.
4. Нейроны РФ высоко чувствительны к химическим воздействиям (они легко блокируются снотворными средствами, барбитуратами). Это явление используется для снятия возбуждения у психически больных людей, что вызывает наркоз или сон.
5. Нейроны РФ полисенсорны т.е. возбуждаются на раздражения, поступающие от различных рецепторов. Именно в них афферентные импульсы теряют свою специфичность и оказывают неспецифическое возбуждение на все отделы коры. В РФ продолговатого, среднего мозга и моста имеются нейроны, реагирующие на боль – они получают информацию от мышц или внутренних органов, что создаёт чувство общего дискомфорта, не всегда локализуемое, и ощущение тупой боли.
Современные представления о влиянии РФ.
Согласно современным представлениям различают восходящие и ниcходящие влияния РФ.
Восходящие влияния обычно носят активирующий характер (Бремер, 1935). РФ повышает тонус коры и регулирует возбудимость её нейронов, не изменяя специфики ответов на адекватные раздражители. Иногда может наблюдаться торможение коры, так как кора через РФ сама регулирует свою активность.
Нисходящее влияние открыто И.М.Сеченовым (1862) в опыте с кристалликом хлорида натрия, помещённым на таламус лягушки. Он получил торможение сгибательного рефлекса, определяемого по методу Тюрка. Однако только в 40-е годы стало понятно, что кристаллик хлорида натрия тормозит сгибательный рефлекс по механизму возбуждения ретикулярной формации ствола и включению тормозящих влияний на мотонейроны. В настоящее время установлено (Г.Мегун, Д.Моруцци, 1944-1950), что нисходящее влияние РФ оказывает модулирующее воздействие на нейроны спинного мозга, т.е. оно может быть как тормозным, так и облегчающим.
Нисходящее тормозное влияние: возбуждение нейронов РФ в медиальной части продолговатого мозга моносинаптически затормаживает a-мотонейроны передних рогов спинного мозга, а также возбуждает тормозные клетки Реншоу, которые в свою очередь будут затормаживать a-мотонейроны.
Нисходящее облегчающее влияние начинается с нейронов РФ, расположенных в промежуточном мозге, среднем мозге, варолиевом мосту и некоторых отделах продолговатого мозга (но в основном это ростральный отдел ствола мозга). Это влияние облегчает возбуждение a-мотонейронов, угнетает возбуждение тормозных нейронов Реншоу, оказывает регулирующее влияние на g-мотонейроны, которые изменяют возбуждение мышечных веретён через интрафузальные мышечные волокна. Тем самым РФ регулирует тонус мышц.
После открытия функции РФ некоторые учёные стали высказывать мнение, что РФ важнее коры. Однако это не так. Кора (по своим кортикоретикулярным путям) регулирует тонус РФ, регулируя этим самым себя. Тонус нейронов РФ зависит от импульсов, поступающих к ним по коллатералям специфических путей, коры, а также от катехоламинов, серотонина и ГАМК.
Структурно-функциональная организация мозжечка.
Кора мозжечка имеет стереотипные связи. Это создаёт условия для быстрой обработки информации. Основной нейронный элемент коры – клетка Пуркинье, имеющая большое количество входов и формирующая единственный аксонный выход из мозжечка, коллатерали которого заканчиваются на его ядерных структурах. На клетки Пуркинье проецируются практически все виды чувствительных раздражений (проприоцептивные, кожные, зрительные, слуховые, вестибулярные и др.). Выходы из мозжечка обеспечивают его связи с корой большого мозга, стволовыми образованиями и спинным мозгом.
Мозжечок анатомически и функционально состоит из древней, старой и новой частей. Древняя часть мозжечка (вестибулярный мозжечок) представлена клочково-узелковой долей – она участвует в регуляции равновесия. Старая часть мозжечка (спинальный мозжечок) состоит из участков червя и пирамиды мозжечка, язычка, околоклочкового отдела – она получает преимущественно проприоцептивную информацию. Новый мозжечок представлен корой полушарий мозжечка и участками червя; в него поступает информация от коры, зрительных и слуховых рецептирующих систем. Это свидетельствует об участии нового мозжечка в анализе зрительных и звуковых сигналов и организации на них реакции.
Кора мозжечка имеет три слоя:
1) молекулярный – это поверхностный слой, в котором находятся дендриты грушевидных клеток Пуркинье (на каждом дендрите находится до 200 000 синапсов) и идущие параллельно аксоны вставочных нейронов (зёрен); это самая мощная дендритная система в ЦНС – она обеспечивает сбор, обработку и передачу информации;
2) ганглиозный – это ориентированные вертикально грушевидные клетки Пуркинье с корзинчатыми и звёздчатыми нейронами; аксоны корзинчатых и звёздчатых нейронов дают тормозные синапсы на грушевидные клетки Пуркинье;
3) зернистый – это вставочные нейроны-зёрна, аксоны которых поднимаются в молекулярный слой и дают синапсы на дендритах грушевидных клеток Пуркинье, а также клетки Гольджи, которые возбуждаются от нейронов-зёрен и их же тормозят по принципу обратной связи.
Под корой в сером веществе мозжечка находятся подкорковые ядра. Ядро шатра получает информацию от медиальной зоны коры мозжечка и связано с ядром Дейтерса и РФ продолговатого и среднего мозга. Отсюда сигналы идут по ретикулоспинальному пути к мотонейронам спинного мозга. Промежуточная кора мозжечка проецируется на пробковидное и шаровидное ядра, которые связаны со средним мозгом и красным ядром, а также таламусом и двигательной зоной коры больших полушарий. Зубчатое ядро получает информацию от латеральной зоны коры мозжечка и связано через таламус с моторной зоной коры большого мозга.
Мозжечок связан с другими структурами ЦНС тремя парами ножек:
1) нижними;
2) средними;
3) верхними.
Афферентные входы в мозжечок.
Сигналы поступают в мозжечок в основном через нижние ножки по трём путям:
1) лазающие волокна, начинающиеся от нижних олив продолговатого мозга, к которым в свою очередь приходят пути Голля и Бурдаха от проприорецепторов мышц. Одно лазающее волокно даёт один синапс на одной грушевидной клетке, причём на один импульс эта грушевидная клетка отвечает ритмическим разрядом;
2) моховидные волокна приходят к мозжечку от спинного мозга, олив, РФ заднего мозга, варолиевого моста, вестибулярного аппарата, а также от коллатералей руброспинального и пирамидного путей. Эти волокна дают синапсы на нейроны-зёрна, нейроны Гольджи, звёздчатые нейроны и корзинчатые нейроны. Нейроны Гольджи, звёздчатые и корзинчатые нейроны, возбуждаясь, тормозят те нейроны, на которых заканчиваются их аксоны. И только нейроны-зёрна возбуждают грушевидные клетки Пуркинье;
3) адренергические волокна, приходящие от голубого пятна среднего мозга. Эти волокна способны диффузно выбрасывать норадреналин, который по межнейронным пространствам поступает к нейронам, гуморально регулируя их возбудимость.
Эфферентные выходы из мозжечка.
Эфферентные выходы из мозжечка в основном непрямые, т.е. пути выходят через верхние, средние, нижние ножки мозжечка на его ядра. Импульсы от грушевидных клеток направляются к подкорковым ядрам мозжечка и их тормозят, а от этих подкорковых ядер сигналы направляются вниз к нейронам РФ (могут возбуждать и тормозить эти нейроны), на красное ядро (возбуждают), на ядро Дейтерса (тормозят). От этих ядер сигналы направляются также вверх к нейронам моста, таламусу, гипоталамусу и в сенсомоторную кору.
Есть и прямые пути (минуя ядра мозжечка):
1) от мозжечка к коре через его средние ножки;
2) от грушевидных клеток Пуркинье на нейроны ядра Дейтерса. Поэтому ядро Дейтерса иногда относят к ядрам мозжечка по функциональному принципу.
Таким образом, мозжечок тесно взаимосвязан с различными отделами ЦНС – спинным мозгом, варолиевым мостом, таламусом, гипоталамусом, сенсорно-моторной корой.
Механизм тормозного действия ядер мозжечка.
Грушевидные клетки обладают определённым тонусом (фоновой активностью), т.е. если по лазающим и через нейроны-зёрна поступает много импульсов к этим грушевидным клеткам, то торможение ядер мозжечка возрастает. Если же поступает много импульсов от моховидных волокон к корзинчатым и звёздчатым нейронам, которые затормаживают грушевидные клетки, то происходит растормаживание ядер подкорки мозжечка с соответствующими эффектами.
Ядра мозжечка имеют высокую тоническую активность и регулируют тонус ряда моторных центров промежуточного, среднего, продолговатого, спинного мозга.
Мозжечковый контроль двигательной активности.
Мозжечок играет незаменимую роль в координации наших движений. Он регулирует силу мышечных сокращений, обеспечивает способность к длительному тоническому сокращению мышц, способность сохранять оптимальный тонус мышц в покое или при движениях, соразмерять произвольные движения с целью этого движения, быстро переходить от сгибания к разгибанию и наоборот. При повреждении мозжечка нарушается передача импульсов по ретикуло-рубро-вестибулоспинальным путям и меняется активность мотонейронов спинного мозга, что приводит к нарушению координации и равновесия человека.
Удаление мозжечка впервые произвёл Лючиани, который выделил три периода после экстирпации:
1) период раздражения (длится примерно 24 часа) связан с травмой, отёком мозга и кровоизлияниями. Всё это время собака лежит, т.к. нарушены координация и поддержание равновесия;
2) период клинических проявлений (длится примерно 1 месяц). Собака начинает ходить, но наблюдается атония мышц, астения, астазия (триада Лючиани);
3) период восстановления функций связан с компенсаторной ролью коры.
У человека повреждение мозжечка проявляется следующими симптомами:
1) астения (astheneia, гр. – слабость) – это снижение силы мышечного сокращения, быстрая утомляемость мышц;
2) астазия (a, гр. – не, отсутствие; + stasia, гр. – стояние) – это утрата способности к длительному сокращению мышц, что затрудняет стояние, сидение; характеризуется появлением качательных и дрожательных движений;
3) дистония (dis, лат. – расстройство; + tonus, лат. – напряжение) – это непроизвольное повышение или понижение тонуса мышц;
4) тремор (tremolo, ит. – дрожащий) – это дрожание пальцев рук, кистей, головы в покое;
5) дисметрия – это расстройство равномерности движений, выражающееся либо в излишнем (гиперметрия), либо недостаточном движении (гипометрия);
6) атаксия (ataxia, гр. – беспорядок) – это нарушение координации движений, невозможность выполнения движений в нужном порядке или в определённой последовательности (адиадохокинез, «пьяная» походка, асинергия);
7) дизартрия (dis + arthroo, гр. – расчленяю) – это расстройство организации речевой моторики, характеризующееся затруднённым произношением слов, слогов и звуков;
8) повышение тонуса мышц-разгибателей.
Мозжечок и кора больших полушарий.
Функционально мозжечок может оказывать облегчающее, тормозящее и компенсаторное влияние на реализацию функций коры больших полушарий.
Одномоментное удаление мозжечка, как правило, приводит к гибели человека. Однако при частичном повреждении мозжечка кора лобных долей больших полушарий компенсирует вызываемые расстройства. Это возможно благодаря существованию лобно-мостомозжечкового тракта.
Кроме этого, мозжечок может изменять уровень тактильной, температурной и зрительной чувствительности. Удаление мозжечка приводит к ослаблению силы процессов возбуждения и торможения, а также нарушению баланса между ними. При этом затрудняются процессы научения и формирования условных рефлексов. Мозжечок и автономная нервная система.
Благодаря связям мозжечка и таламуса с гипоталамусом, мозжечок регулирует вегетативные функции (увеличивает или уменьшает артериальное давление; снижает тонус желудочно-кишечного тракта; регулирует дыхание – если у пациента тахипноэ, то мозжечок благодаря связям с автономной нервной системой вызывает брадипноэ и наоборот). При повреждении мозжечка нарушается всасывательная и секреторная функция ЖКТ, расстраивается обмен веществ, наступает гипергликемия, жировое перерождение мышц, снижается аппетит, больные худеют, а также нарушается генеративная функция, что проявляется в нарушении последовательности процессов родовой деятельности. В целом, мозжечок оптимизирует отношения между сомой и вегетатикой.
Таламус.
Таламус (thalamus, лат. – зрительный бугор) – это не только зрительный бугор, как принято его называть. В таламусе сходятся афферентные импульсы не только от зрительных рецепторов, но и от всех остальных рецепторов (экстеро-, интеро-, и проприорецепторов), поэтому его называют коллектором (collector, лат. – собирающий) всех видов чувствительности. Таламус считается входными воротами и распределительным пунктом. В нём происходит обработка и интеграция всех сигналов, поступающих в кору от спинного, продолговатого, среднего мозга, мозжечка и базальных ядер головного мозга.
Таламус выполняет следующие функции:
1) интеграция различных видов чувствительности и их переключение на таламокортикальные пути;
2) организация врождённых форм поведения (инстинкты, влечения, эмоции);
3) анализ болевой чувствительности (высший центр боли).
Для выполнения этих функций в таламусе имеется около 120 ядер, каждое из которых связано со своей областью коры. Эти ядра классифицируются по разным признакам:
1) по морфологическим признакам ядра подразделяются на переднюю, медиальную и латеральную группы;
2) по функциональным признакам ядра бывают специфическими, ассоциативными и неспецифическими (Лоренте де Но).
Передняя группа ядер таламуса проецирует аксоны свих нейронов в поясную извилину коры, медиальная группа – в лобную долю; латеральная – в теменную, височную и затылочную доли.
К специфическим ядрам таламуса относятся медиальные и латеральные коленчатые тела, а также передние вентральные, медиальные, вентролатеральные, постлатеральные и постмедиальные ядра. Основной функционаьной единицей этих ядер являются релейные (переключающие) нейроны, которые получают импульсы с периферии от всех видов рецепторов. Далее обработанная информация от них направляется либо к ассоциативным ядрам таламуса, либо в кору – в строго определённую зону третьего и четвёртого слоя, т.е. и эти ядра и зоны коры, куда приходят нервные импульсы, имеют строгую соматотопическую локализацию.
Например, латеральные коленчатые тела получают импульсы от зрительных рецепторов, рецепторов глаз, верхнего двухолмия. Латеральные коленчатые тела обрабатывают эту информацию с помощью своих специфических нейронов (мало дендритов и длинный аксон), и далее нервные импульсы идут в затылочную долю коры (третий, четвёртый слои).
Ассоциативные ядра расположены в передних отделах таламуса. К ним относятся передние, медиодорзальные, латеродорзальные ядра и подушка. Эти ядра не связаны непосредственно с рецепторами. Они получают сигналы от специфических ядер и обработанную информацию отправляют в соответствующую ассоциативную зону коры.
Например, передние ядра связаны с поясной извилиной. Нейроны этих ядер имеют биполярное строение, бывают трёхотростчатые и мультиполярные, на них конвергируют импульсы различной модальности, т.е. они являются полисенсорными, в результате чего происходит интеграция полимодальных сигналов, которые далее поступают в ассоциативные зоны коры.
Большинство неспецифических ядер относится к РФ – срединный центр, парацентральные ядра, центральные медиальные, центральные латеральные и др. Их нейроны между собой связаны по ретикулярному типу и импульсы от них направляются не в определённую зону коры, а диффузно во все слои коры. К этим ядрам поступают импульсы от РФ ствола, гипоталамуса, лимбической системы, базальных ядер, специфических ядер таламуса. Возбуждение этих ядер приводит к формированию в коре веретёнообразных потенциалов действия, которые сопровождаются развитием сонного состояния.
Такая сложная связь таламуса позволяет ему участвовать в организации рефлексов: жевание, глотание, сосание, смех, причём эти реакции тесно интегрируются с вегетативными рефлексами.
При патологических процессах в таламусе возникают неукротимые таламические боли.
Гипоталамус.
Гипоталамус (hypothalamus, лат. – подбугорье) – это структура промежуточного мозга, входящая в лимбическую систему и связанная со спинным, продолговатым, средним мозгом, мостом, таламусом, подкорковыми ядрами и корой. К гипоталамусу относятся серый бугор, воронка с нейрогипофизом, сосцевидные тела. Морфологически в гипоталамусе выделяют 50 пар ядер, которые делятся на 5 групп:
1) передние;
2) средние;
3) задние;
4) преоптические;
5) наружные.
Ядра имеют богатое кровоснабжение. Например, на 1 мм2 площади гипоталамуса приходится 2500 капилляров, а в гиппокампе – 350. Некоторые ядра получают как собственное кровоснабжение, так и дублирующее из сосудов велизиевого круга. Эти капилляры имеют крупные поры и высокую проницаемость для белковых молекул, нуклеопротеидов, что объясняет чувствительность гипоталамуса к гуморальным веществам белковой природы, к токсинам, к нейровирусам. Гипоталамус созревает к 14 годам, когда заканчивает формироваться гипоталамо-гипофизарная система.
Гипоталамус выполняет следующие функции:
1) высший центр автономной нервной системы;
2) регуляция гомеостатических реакций;
3) регуляция эндокринной системы (через адено- и нейрогипофиз);
4) регуляция поведения человека: формирование эмоционального и мотивационного (motif, фр. – побудительная причина) поведения;
5) регуляция цикла сон-бодрствование.
6) интеграция соматических, эндокринных и вегетативных функций, а также их сопряжение с эмоциями и поведением человека;
Афферентные связи гипоталамус получает:
1) от таламуса;
2) от лимбической системы;
3) от подкорковых ядер;
4) от коры.
Таким образом, гипоталамус получает информацию от всех отделов мозга. На основе этой информации происходит интегрирование сигналов от указанных структур.
Эфферентные связи гипоталамус направляет:
1) к таламусу;
2) к ретикулярной формации ствола;
3) к вегетативным центрам ствола;
4) к спинному мозгу.
Гипоталамус и автономная нервная система.
Гипоталамус, являясь высшим центром автономной нервной системы, влияет на вегетативные функции организмы нервным и гуморальным путями.
При раздражении передней группы ядер гипоталамуса, то на периферии возникают реакции парасимпатического знака и выделяются нейросекреты (гормоны нейрогипофиза).
При раздражении средней группы ядер гипоталамуса, то возникает снижение тонуса симпатической нервной системы, и выделяются рилизинг-факторы (либерины и статины).
При раздражении задней группы ядер гипоталамуса, то на периферии развиваются реакции симпатического знака.
Это деление довольно условно, потому что все структуры гипоталамуса могут давать (в разной степени) как симпатические, так и парасимпатческие эффекты, т.е. это взаимодополняющие отношения.
Для регуляции вегетативных функций в гипоталамусе имеются следующие центры:
1) терморегуляции;
2) голода;
3) насыщения;
4) жажды;
5) полового поведения;
6) всех видов обмена веществ;
7) сна-бодрствования;
8) страха и ярости.
При возбуждении этих центров эфферентные импульсы от них направляются в центры ствола мозга, регулирующие вегетативные функции, а также на передний мозг и эндокринную систему.
Гипоталамус и эндокринная система.
Нейроны гипоталамуса обладают нейросекреторной функцией. Передняя группа ядер выделяет окситоцин и антидиуретический гормон, т.е. гипоталамус прямо, без посредников, регулирует деятельность почек и матки.
Связь гипоталамуса с аденогипофизом опосредуется через рилизинг-факторы (release, англ. – освобождение) (их выделяет средняя группа ядер). В гипоталамусе вырабатываются все либерины (libero, лат. – освобождать) (соматолиберин, пролактолиберин, тиролиберин, кортиколиберин, гонадолиберины (лю- и фоллиберин)) и 4 статина (statuo, лат. – останавливать) (соматостатин, меланостатин, пролактостатин, липостатин).
Нейроны срединной группы выполняют также детектирующую функцию, т.е. они реагируют на:
1) температуру крови;
2) осмотическое давление;
3) электролитный состав;
4) гормональный статус организма.
При повреждении этих «эндокринных» ядер гипоталамуса у детей наблюдается раннее половое созревание, а у взрослых – нарушение половая и менструальная функции.
Гипоталамус и эмоции.
Связь гипоталамуса и эмоций была открыта благодаря опытам Олдса и Дельгадо.
Олдс (1956) производил опыты с самораздражением: он вводил крысам электроды в различные структуры гипоталамуса. Затем животные выпускались в клетку, в которой находилась педаль, замыкающая электрическую цепь: стимулятор – электроды – педаль.
Если электроды были введены в структуры, формирующие положительные эмоции, то крыса, случайно нажимая на педаль, не отходила от неё и начинала нажимать её с частотой, достигающей два нажатия в секунду. Крыса, судя по факту самостимуляции, получает положительные эмоции – чувство «тихой радости».
Наоборот, когда Олдс вводил электроды в центр «отрицательных эмоций», крыса, единожды случайно нажав на педаль, убегала от неё, забивалась в дальний угол клетки и больше не подходила к педали, значит, она испытывала неприятные ощущения (отрицательные эмоции).
В дальнейшем Дельгадо вживлял электроды в положительные зоны гипоталамуса быка. На корриде (на виду у всех) этот разъярённый бык набрасывался на красный плащ тореро, но при включении стимуляции положительных зон гипоталамуса он внезапно останавливался, и его поведение указывало на полное отсутствие реакции ярости.
Возбуждение ядер передней группы гипоталамуса вызывает пассивно-оборонительные реакции: страх, ярость, гнев и неудовлетворение.
Раздражение задней группы ядер гипоталамуса вызывает симпатические эффекты и активную агрессивную реакцию, сопровождаемую экзофтальмом, расширением зрачка, увеличением артериального давления, сокращением желчного и мочевого пузыря.
Гипоталамус и регуляция цикла сон-бодрствование.
Задние ядра гипоталамуса поддерживают человека в состоянии бодрствования. При их повреждении наступает такое патологическое явление как летаргический сон, который продолжается месяцами и годами.
Передняя группа ядер гипоталамуса участвует в организации сна. Их стимуляция вызывает сон.
В гипоталамусе и в гипофизе имеются нейроны, вырабатывающие опиоидные вещества – эндорфины и энкефалины. Они обладают обезболивающим эффектом, а также подавляют стресс-реакцию.
1) организация рефлексов, обеспечивающих подготовку и реализацию различных форм поведения;
2) проводниковая функция;
3) ассоциативная функция.
Продолговатый мозг
Продолговатый мозг (bulbus, medulla oblangata) – это продолжение спинного мозга. Его длина составляет примерно 2,5 см. У этого отдела мозга нет чёткого сегментарного строения, хотя различают сегментарный и надсегментарный уровни. В продолговатом мозге расположены оливы – это тонкое (Голля) и клиновидное (Бурдаха) ядра проприоцептивной чувствительности. Здесь находятся перекрёсты пирамидных путей и пучков Голля и Бурдаха, а также нейроны ретикулярной формации. Функции продолговатого мозга:
1) рефлекторная функция;
2) сенсорная функция;
3) проводниковая функция;
4) автоматическая функция;
5) ассоциативная функция.
Рефлекторная функция продолговатого мозга.
Эта функция обеспечивается ядрами 5-10 пар черепно-мозговых нервов. Можно сказать, что продолговатый мозг выполняет главные (жизненно важные) рефлекторные функции:
1) жизненно важные рефлексы на сердце, сосуды, дыхание, ЖКТ;
2) защитные рефлексы: чихание, моргание, кашель, рвота, слёзоотделение и т.д.;
3) сложно координированные рефлексы жевания, глотания, сосания;
4) рефлексы, связанные с поддержанием позы, выпрямления и изменения положения тела в пространстве при движении человека.
В продолговатом мозге локализуются дыхательный (медиальные части ретикулярной формации) и сердечно-сосудистый центры. Они функционируют совместно со всеми нейронами ретикулярной формации, с гипоталамусом и другими вышележащими структурами мозга. Поэтому при возбуждении сердечно-сосудистого центра изменяется дыхание, тонус мышц кишечника, мочевого пузыря, бронхов и др. При повреждении этих центров, например, при вклинении мозга, человек может погибнуть.
Защитные рефлексы реализуются с рецепторов слизистых оболочек носоглотки, полости рта, гортани, глаз через афферентные ветви тройничного и языкоглоточного нервов, идущие в соответствующие чувствительные ядра продолговатого мозга. От этих ядер идут нервные импульсы к двигательным ядрам тройничного, лицевого, блуждающего, языкоглоточного, добавочного и подъязычного нервов, от которых по эфферентным нервам импульсы идут к соответсвующим эффекторам, реализующим защитные рефлексы.
Сложно координированные рефлексы реализуются точно так же, как и защитные, за счёт последовательно включённых мышечных групп. Так, при возбуждении рецепторов губ возникает рефлекс сосания. При этом по афферентным волокнам тройничного нерва возбуждение распространяется в продолговатый мозг, где переключается на эфферентные нейроны лицевого и подъязычного нервов. У новорождённых сосание – непроизвольный рефлекс. С возрастом за счёт формирования ассоциативных связей с корой головного мозга он попадает под её влияние и может произвольно управляться. Жевание как непроизвольный процесс может наблюдаться только у бульбарных животных (животные с сохранёнными продолговатым и спинным мозгом и удалёнными остальными отделами ЦНС). При раздражении рецепторов слизистой оболочки ротовой полости нервные импульсы по чувствительным волокнам тройничного нерва направляются к его чувствительным ядрам, а затем переключаются на мотонейроны моторных ядер тройничного и подъязычного нервов, от которых импульсы направляются к жевательным мышцам и мышцам языка. Глотание начинается от рецепторов слизистой оболочки ротовой полости, мягкого нёба. Возбуждение от этих рецепторов по афферентным волокнам тройничного, языкоглоточного и блуждающего нервов поступает в центр глотания продолговатого мозга, который обеспечивает строго координированную последовательность рефлекторного сокращения мышц, участвующих в этом акте. Центр глотания тесно связан с дыхательным центром – при глотании деятельность дыхательной мускулатуры тормозится.
Классификация рефлексов, поддерживающих позу человека по Магнусу:
1) статические (познотонические и выпрямительные);
2) статокинетические (нистагм, лифтные рефлексы).
Статические рефлексы обеспечивают в покое поддержание позы человека в пространстве. Они начинаются от вестибулярного аппарата, проприорецепторов глубоких мышц шеи, а также с рецепторов туловища при одностороннем раздражении.
Познотонические рефлексы (рефлексы положения) отвечают за поддержание горизонтальной, сидячей и вертикальной позы человека в спокойном состоянии. При разрушении лабиринтов внутреннего уха или наложении гипсовой повязки на шею эти рефлексы не осуществляются.
Выпрямительные рефлексы включаются при неудобном положении тела. Благодаря им человек принимает позу среднефизиологического покоя. Для осуществления этих рефлексов кроме ядер продолговатого мозга нужны ядра среднего мозга. Например, если сбросить кошку спиной вниз, то с рецепторов полукружных каналов импульсы передаются через продолговатый мозг на мышцы шеи, и голова поворачивается вниз, возбуждаются рецепторы глубоких мышц шеи, от которых импульсы идут к ядру Дейтерса продолговатого мозга, а от него по вестибулоспинальным путям к мотонейронам разгибателей спинного мозга, что приводит к сокращению мышц разгибателей, и кошка переворачивается в воздухе и приземляется на лапы. Этот выпрямительный рефлекс контролируется γ-нейронами спинного мозга.
Статокинетические рефлексы обеспечивают перераспределение тонуса мышц туловища и шеи для организации позы, соответствующей моменту прямолинейного или вращательного движения.
Нистагм (nystagmos, гр. – мигание) – это движение глаз (нистагм глаз) и головы (нистагм головы) в сторону, противоположную движению, а затем их возвращение в исходное положение. Например, если человек едет в поезде и при этом смотрит в окно, то его глаза и голова непроизвольно совершают эти движения. Если нистагм появляется у человека при отсутствии прямолинейного или вращательного движения, то это является серьёзным неврологическим симптомом.
Лифтные рефлексы проявляются при перемещении на скоростном лифте вверх или вниз. При подъёме вверх тонус мышц сгибателей ног повышается, и человек приседает. При спуске вниз возрастает тонус разгибателей. Для осуществления этих рефлексов необходимы ядра продолговатого и среднего мозга.
Сенсорная функция продолговатого мозга.
В сенсорных ядрах, расположенных в продолговатом мозге, происходит анализ силы и качества раздражений следующих видов чувствительности:
1) первичная чувствительность кожи лица (ядро тройничного нерва);
2) первичная рецепция звуковых сигналов (ядро улиткового нерва);
3) первичная рецепция вкуса (ядро языкоглоточного нерва);
4) первичная рецепция вестибулярных раздражений (верхнее вестибулярное ядро).
Далее из перечисленных ядер нервные импульсы передаются в подкорковые ядра для определения биологической значимости раздражений.
Проводниковая функция продолговатого мозга.
В продолговатом мозге берут начало:
1) оливоспинальный тракт;
2) ретикулоспинальный тракт;
3) вестибулоспинальный тракт.
Они обеспечивают тонус и координацию сокращения мышц.
Здесь заканчиваются:
1) нисходящий кортикоретикулярный путь;
2) восходящие пути Голля и Бурдаха.
Через продолговатый мозг транзитом проходят следующие восходящие и нисходящие пути спинного мозга:
1) спиноталамический путь;
2) кортикоспинальный путь;
3) руброспинальный путь.
Автоматическая функция продолговатого мозга.
Эта функция связана с надсегментарным уровнем продолговатого мозга, т.е. со структурами ретикулярной формации, а также ядрами Голля и Бурдаха – эти структуры, находясь в постоянном тонусе, контролируют автоматическую деятельность дыхательной, сердечно-сосудистой систем и регуляцию артериального давления.
Ассоциативная функция продолговатого мозга.
Ассоциативная функция продолговатого мозга заключается во взаимодействии его структур между собой, а также со спинным мозгом, подкорковыми ядрами и корой больших полушарий.
Средний мозг
В состав среднего мозга входят пластинка четверохолмия, красное ядро, чёрная субстанция, ядро глазодвигательного нерва и ядро блоковидного нерва. Функции среднего мозга:
1) сенсорная функция (анализ биологической значимости зрительной и звуковой информации);
2) проводниковая функция (проведение нервных импульсов по восходящим путям к таламусу, мозжечку и большому мозгу и нисходящим путям к продолговатому и спинному мозгу);
3) двигательная функция (реализуется за счёт ядер блокового, глазодвигательного нервов, красного ядра и чёрной субстанции);
4) рефлекторная функция (реализуется через структуры четверохолмия, которые являются функционально самостоятельными).
Пластинка четверохолмия включает в себя верхнее и нижнее двухолмие. Верхнее двухолмие является первичным центром зрения, здесь происходит переключение импульсов, поступающих от рецепторов глаза на нейроны, которые посылают свои сигналы в зрительную область коры, там находятся вторичные центры зрения – корковые. Верхнее двухолмие тесно связано с латеральными коленчатыми телами, которые уже относятся к промежуточному мозгу. Верхнее двухолмие осуществляет ориентировочные реакции на свет, т.е. содружественный поворот глаз и головы в сторону внезапно возникшего светового раздражителя, а также старт-рефлексы на свет, т.е. настораживание ушей, напряжение мышц, готовность к прыжку или бегству. Здесь же имеются центры аккомодации глаз, их конвергенции и реакции зрачка на свет.
Нижнее двухолмие осуществляет ориентировочные реакции на звук, т.е. здесь находятся первичные центры слуха. Аксоны этих нейронов направляются в висцеральную зону коры где находятся вторичные (корковые) центры слуха, эти ядра также участвуют в осуществлении старт-рефлексов на звук. В общем пластинка четверохолмия осуществляет сторожевые рефлексы, т.е. вздрагивание, настораживание, вскрикивание на сильный звуковой или световой раздражители, которые спарены с соответствующими вегетативными реакциями.
В чёрной субстанции находятся нейроны, которые осуществляют координацию рефлексов жевания и глотания, координацию мелких движений пальцев (игра на пианино, скрипке), обеспечивает пластический тонус человека, участвует в сокращении мимических мышц. При поражении нейронов чёрной субстанции (например, при атеросклерозе сосудов головного мозга) развивается паркинсонизм (тремор; амимия – маскообразное лицо; повышенное слюновыделение и др.), а также страдает эмоциональная сфера.
Красное ядро получает импульсы от мозжечка, моторной зоны коры (передняя центральная извилина) и ядер подкорки. Они, в свою очередь, через вестибулярное ядро Дейтерса и расположенную рядом ретикулярную формацию затормаживают a-мотонейроны разгибателей передних рогов спинного мозга. При повреждении красных ядер наступает децеребрационная ригидность (rigidus, лат. – окоченелый, негибкий). Децеребрация – это операция перерезки между верхними и нижними бугорками четверохолмия, тогда красное ядро остаётся выше перерезки. Это явление заключается в ригидности мышц-разгибателей. При этом у животного поднят хвост, запрокинута голова, разогнуты все конечности, и попытка их согнуть может привести к перелому конечностей. У человека наблюдается опистотонус, т.е. человек лежит, опираясь на затылок и пятки, но, так как сгибатели у человека сильнее разгибателей, его руки будут согнуты в локтях. Механизм этого явления состоит в следующем: красное ядро, а также мозжечок и вышележащие структуры тормозят ядро Дейтерса и находящуюся рядом ретикулярную формацию. Это обусловливает нормальное распределение мышечного тонуса между нейронами сгибателей и разгибателей. При разрушении красного ядра его торможение на ядро Дейтерса и ретикулярную формацию снимается, и возбудимость этих структур резко возрастает. В результате этого к a-мотонейронам разгибателей идёт повышенное количество нервных импульсов, и тонус мышц-разгибателей увеличивается. Таким образом, красное ядро вместе с вестибулярными ядрами регулирует распределение тонуса между сгибателями и разгибателями, а также осуществляет выпрямительные и статокинетические рефлексы.
Ретикулярная формация
Ретикулярная (reticulum, лат. – сеточка) формация (formatio, лат. – образование) (РФ) была описана в 1885 году Дейтерсом, который и дал ей название. Ретикулярная формация – это связанный практически со всеми структурами ЦНС комплекс полиморфных нейронов различных размеров с огромным количеством коллатералей и отростков, между которыми имеются тесные контакты в виде химических и электрических синапсов, расположенных от спинного мозга до неспецифических ядер таламуса.
До 1935 года учёные думали, что эти хаотически разбросанные по стволу мозга нейроны в виде сетчатого образования не выполняют никакой функции. Но в 1935 году Бремер поставил опыты с перерезками ствола мозга у кошки и вживлением микроэлектродов выше перерезки.
Первая перерезка производилась между передними и задними бугорками четверохолмия, в результате чего Бремер выключал основную массу РФ, и кошка засыпала. При этом на ЭЭГ записывался a-ритм – это называется реакцией синхронизации, так как биоэлектрическая активность коры имеет синхронизированный характер. При раздражении нейронов РФ выше перерезки кошка просыпалась (реакция пробуждения). При этом на ЭЭГ a-ритм сменялся b-ритмом, такая реакция называется реакцией десинхронизации, так как нарушается синхронизация потенциала действия в коре.
При перерезке ниже среднего мозга (т.е. при сохранении основной массы РФ) кошка бодрствует и на ЭЭГ пишется b-ритм. На основании этих опытов был сделан вывод, что РФ выполняет очень важную физиологическую функцию: поддерживает кору в бодрствующем состоянии. Если РФ выключена, наступает сон.
Дальнейшие исследования показали, что РФ получает импульсы от спинного мозга, мозжечка, промежуточного мозга, от базальных ядер и коры. В свою очередь она посылает импульсы в спинной мозг, к подкорке, к мозжечку, к гипоталамусу, лимбической системе и к коре. Основной функцией РФ является регуляция уровня активности коры большого мозга, мозжечка, таламуса и спинного мозга. Благодаря связям РФ с гипоталамусом, она участвует в регуляции вегетативных функций.
Генерализованный характер влияния РФ на многие структуры мозга дал основание считать её неспецифической системой.
Особенности нейронов РФ.
Нейроны РФ характеризуются рядом особенностей.
1. Большинство нейронов РФ имеет длинные дендриты и короткий аксон. Хотя существуют гигантские нейроны с длинным аксоном, образующий пути из РФ в другие области мозга.
2. Активность нейронов РФ различна. Среди них имеются нейроны как с постоянной ритмической активностью, не зависящей от поступающих сигналов, так и «молчащие» (специфические) нейроны, которые в покое не генерируют импульсов, но возбуждаются при стимуляции зрительных или слуховых рецепторов. Эти специфические нейроны обеспечивают быструю реакцию на внезапные, неопознанные сигналы.
3. На нейроны РФ конвергируют нервные импульсы от восходящих и нисходящих специфических путей, проходящих по стволу мозга и дающих сюда коллатерали. В свою очередь нейроны РФ сами образуют большое количество коллатералей и синапсов на нейронах различных отделов мозга.
4. Нейроны РФ высоко чувствительны к химическим воздействиям (они легко блокируются снотворными средствами, барбитуратами). Это явление используется для снятия возбуждения у психически больных людей, что вызывает наркоз или сон.
5. Нейроны РФ полисенсорны т.е. возбуждаются на раздражения, поступающие от различных рецепторов. Именно в них афферентные импульсы теряют свою специфичность и оказывают неспецифическое возбуждение на все отделы коры. В РФ продолговатого, среднего мозга и моста имеются нейроны, реагирующие на боль – они получают информацию от мышц или внутренних органов, что создаёт чувство общего дискомфорта, не всегда локализуемое, и ощущение тупой боли.
Современные представления о влиянии РФ.
Согласно современным представлениям различают восходящие и ниcходящие влияния РФ.
Восходящие влияния обычно носят активирующий характер (Бремер, 1935). РФ повышает тонус коры и регулирует возбудимость её нейронов, не изменяя специфики ответов на адекватные раздражители. Иногда может наблюдаться торможение коры, так как кора через РФ сама регулирует свою активность.
Нисходящее влияние открыто И.М.Сеченовым (1862) в опыте с кристалликом хлорида натрия, помещённым на таламус лягушки. Он получил торможение сгибательного рефлекса, определяемого по методу Тюрка. Однако только в 40-е годы стало понятно, что кристаллик хлорида натрия тормозит сгибательный рефлекс по механизму возбуждения ретикулярной формации ствола и включению тормозящих влияний на мотонейроны. В настоящее время установлено (Г.Мегун, Д.Моруцци, 1944-1950), что нисходящее влияние РФ оказывает модулирующее воздействие на нейроны спинного мозга, т.е. оно может быть как тормозным, так и облегчающим.
Нисходящее тормозное влияние: возбуждение нейронов РФ в медиальной части продолговатого мозга моносинаптически затормаживает a-мотонейроны передних рогов спинного мозга, а также возбуждает тормозные клетки Реншоу, которые в свою очередь будут затормаживать a-мотонейроны.
Нисходящее облегчающее влияние начинается с нейронов РФ, расположенных в промежуточном мозге, среднем мозге, варолиевом мосту и некоторых отделах продолговатого мозга (но в основном это ростральный отдел ствола мозга). Это влияние облегчает возбуждение a-мотонейронов, угнетает возбуждение тормозных нейронов Реншоу, оказывает регулирующее влияние на g-мотонейроны, которые изменяют возбуждение мышечных веретён через интрафузальные мышечные волокна. Тем самым РФ регулирует тонус мышц.
После открытия функции РФ некоторые учёные стали высказывать мнение, что РФ важнее коры. Однако это не так. Кора (по своим кортикоретикулярным путям) регулирует тонус РФ, регулируя этим самым себя. Тонус нейронов РФ зависит от импульсов, поступающих к ним по коллатералям специфических путей, коры, а также от катехоламинов, серотонина и ГАМК.
Мозжечок
Мозжечок – это очень древняя интегративная структура ЦНС, которая состоит из двух полушарий, червя и клочково-узелковых (флоккулонодулярных) долей. Полушария мозжечка покрыты корой и имеют подкорковые ядра (пробковидное, зубчатое, шаровидное ядра, ядро шатра). Мозжечок принимает участие в координации и регуляции произвольных и непроизвольных движений, а также в регуляции вегетативных функций и поведенческих реакций. Структурно-функциональная организация мозжечка.
Кора мозжечка имеет стереотипные связи. Это создаёт условия для быстрой обработки информации. Основной нейронный элемент коры – клетка Пуркинье, имеющая большое количество входов и формирующая единственный аксонный выход из мозжечка, коллатерали которого заканчиваются на его ядерных структурах. На клетки Пуркинье проецируются практически все виды чувствительных раздражений (проприоцептивные, кожные, зрительные, слуховые, вестибулярные и др.). Выходы из мозжечка обеспечивают его связи с корой большого мозга, стволовыми образованиями и спинным мозгом.
Мозжечок анатомически и функционально состоит из древней, старой и новой частей. Древняя часть мозжечка (вестибулярный мозжечок) представлена клочково-узелковой долей – она участвует в регуляции равновесия. Старая часть мозжечка (спинальный мозжечок) состоит из участков червя и пирамиды мозжечка, язычка, околоклочкового отдела – она получает преимущественно проприоцептивную информацию. Новый мозжечок представлен корой полушарий мозжечка и участками червя; в него поступает информация от коры, зрительных и слуховых рецептирующих систем. Это свидетельствует об участии нового мозжечка в анализе зрительных и звуковых сигналов и организации на них реакции.
Кора мозжечка имеет три слоя:
1) молекулярный – это поверхностный слой, в котором находятся дендриты грушевидных клеток Пуркинье (на каждом дендрите находится до 200 000 синапсов) и идущие параллельно аксоны вставочных нейронов (зёрен); это самая мощная дендритная система в ЦНС – она обеспечивает сбор, обработку и передачу информации;
2) ганглиозный – это ориентированные вертикально грушевидные клетки Пуркинье с корзинчатыми и звёздчатыми нейронами; аксоны корзинчатых и звёздчатых нейронов дают тормозные синапсы на грушевидные клетки Пуркинье;
3) зернистый – это вставочные нейроны-зёрна, аксоны которых поднимаются в молекулярный слой и дают синапсы на дендритах грушевидных клеток Пуркинье, а также клетки Гольджи, которые возбуждаются от нейронов-зёрен и их же тормозят по принципу обратной связи.
Под корой в сером веществе мозжечка находятся подкорковые ядра. Ядро шатра получает информацию от медиальной зоны коры мозжечка и связано с ядром Дейтерса и РФ продолговатого и среднего мозга. Отсюда сигналы идут по ретикулоспинальному пути к мотонейронам спинного мозга. Промежуточная кора мозжечка проецируется на пробковидное и шаровидное ядра, которые связаны со средним мозгом и красным ядром, а также таламусом и двигательной зоной коры больших полушарий. Зубчатое ядро получает информацию от латеральной зоны коры мозжечка и связано через таламус с моторной зоной коры большого мозга.
Мозжечок связан с другими структурами ЦНС тремя парами ножек:
1) нижними;
2) средними;
3) верхними.
Афферентные входы в мозжечок.
Сигналы поступают в мозжечок в основном через нижние ножки по трём путям:
1) лазающие волокна, начинающиеся от нижних олив продолговатого мозга, к которым в свою очередь приходят пути Голля и Бурдаха от проприорецепторов мышц. Одно лазающее волокно даёт один синапс на одной грушевидной клетке, причём на один импульс эта грушевидная клетка отвечает ритмическим разрядом;
2) моховидные волокна приходят к мозжечку от спинного мозга, олив, РФ заднего мозга, варолиевого моста, вестибулярного аппарата, а также от коллатералей руброспинального и пирамидного путей. Эти волокна дают синапсы на нейроны-зёрна, нейроны Гольджи, звёздчатые нейроны и корзинчатые нейроны. Нейроны Гольджи, звёздчатые и корзинчатые нейроны, возбуждаясь, тормозят те нейроны, на которых заканчиваются их аксоны. И только нейроны-зёрна возбуждают грушевидные клетки Пуркинье;
3) адренергические волокна, приходящие от голубого пятна среднего мозга. Эти волокна способны диффузно выбрасывать норадреналин, который по межнейронным пространствам поступает к нейронам, гуморально регулируя их возбудимость.
Эфферентные выходы из мозжечка.
Эфферентные выходы из мозжечка в основном непрямые, т.е. пути выходят через верхние, средние, нижние ножки мозжечка на его ядра. Импульсы от грушевидных клеток направляются к подкорковым ядрам мозжечка и их тормозят, а от этих подкорковых ядер сигналы направляются вниз к нейронам РФ (могут возбуждать и тормозить эти нейроны), на красное ядро (возбуждают), на ядро Дейтерса (тормозят). От этих ядер сигналы направляются также вверх к нейронам моста, таламусу, гипоталамусу и в сенсомоторную кору.
Есть и прямые пути (минуя ядра мозжечка):
1) от мозжечка к коре через его средние ножки;
2) от грушевидных клеток Пуркинье на нейроны ядра Дейтерса. Поэтому ядро Дейтерса иногда относят к ядрам мозжечка по функциональному принципу.
Таким образом, мозжечок тесно взаимосвязан с различными отделами ЦНС – спинным мозгом, варолиевым мостом, таламусом, гипоталамусом, сенсорно-моторной корой.
Механизм тормозного действия ядер мозжечка.
Грушевидные клетки обладают определённым тонусом (фоновой активностью), т.е. если по лазающим и через нейроны-зёрна поступает много импульсов к этим грушевидным клеткам, то торможение ядер мозжечка возрастает. Если же поступает много импульсов от моховидных волокон к корзинчатым и звёздчатым нейронам, которые затормаживают грушевидные клетки, то происходит растормаживание ядер подкорки мозжечка с соответствующими эффектами.
Ядра мозжечка имеют высокую тоническую активность и регулируют тонус ряда моторных центров промежуточного, среднего, продолговатого, спинного мозга.
Мозжечковый контроль двигательной активности.
Мозжечок играет незаменимую роль в координации наших движений. Он регулирует силу мышечных сокращений, обеспечивает способность к длительному тоническому сокращению мышц, способность сохранять оптимальный тонус мышц в покое или при движениях, соразмерять произвольные движения с целью этого движения, быстро переходить от сгибания к разгибанию и наоборот. При повреждении мозжечка нарушается передача импульсов по ретикуло-рубро-вестибулоспинальным путям и меняется активность мотонейронов спинного мозга, что приводит к нарушению координации и равновесия человека.
Удаление мозжечка впервые произвёл Лючиани, который выделил три периода после экстирпации:
1) период раздражения (длится примерно 24 часа) связан с травмой, отёком мозга и кровоизлияниями. Всё это время собака лежит, т.к. нарушены координация и поддержание равновесия;
2) период клинических проявлений (длится примерно 1 месяц). Собака начинает ходить, но наблюдается атония мышц, астения, астазия (триада Лючиани);
3) период восстановления функций связан с компенсаторной ролью коры.
У человека повреждение мозжечка проявляется следующими симптомами:
1) астения (astheneia, гр. – слабость) – это снижение силы мышечного сокращения, быстрая утомляемость мышц;
2) астазия (a, гр. – не, отсутствие; + stasia, гр. – стояние) – это утрата способности к длительному сокращению мышц, что затрудняет стояние, сидение; характеризуется появлением качательных и дрожательных движений;
3) дистония (dis, лат. – расстройство; + tonus, лат. – напряжение) – это непроизвольное повышение или понижение тонуса мышц;
4) тремор (tremolo, ит. – дрожащий) – это дрожание пальцев рук, кистей, головы в покое;
5) дисметрия – это расстройство равномерности движений, выражающееся либо в излишнем (гиперметрия), либо недостаточном движении (гипометрия);
6) атаксия (ataxia, гр. – беспорядок) – это нарушение координации движений, невозможность выполнения движений в нужном порядке или в определённой последовательности (адиадохокинез, «пьяная» походка, асинергия);
7) дизартрия (dis + arthroo, гр. – расчленяю) – это расстройство организации речевой моторики, характеризующееся затруднённым произношением слов, слогов и звуков;
8) повышение тонуса мышц-разгибателей.
Мозжечок и кора больших полушарий.
Функционально мозжечок может оказывать облегчающее, тормозящее и компенсаторное влияние на реализацию функций коры больших полушарий.
Одномоментное удаление мозжечка, как правило, приводит к гибели человека. Однако при частичном повреждении мозжечка кора лобных долей больших полушарий компенсирует вызываемые расстройства. Это возможно благодаря существованию лобно-мостомозжечкового тракта.
Кроме этого, мозжечок может изменять уровень тактильной, температурной и зрительной чувствительности. Удаление мозжечка приводит к ослаблению силы процессов возбуждения и торможения, а также нарушению баланса между ними. При этом затрудняются процессы научения и формирования условных рефлексов. Мозжечок и автономная нервная система.
Благодаря связям мозжечка и таламуса с гипоталамусом, мозжечок регулирует вегетативные функции (увеличивает или уменьшает артериальное давление; снижает тонус желудочно-кишечного тракта; регулирует дыхание – если у пациента тахипноэ, то мозжечок благодаря связям с автономной нервной системой вызывает брадипноэ и наоборот). При повреждении мозжечка нарушается всасывательная и секреторная функция ЖКТ, расстраивается обмен веществ, наступает гипергликемия, жировое перерождение мышц, снижается аппетит, больные худеют, а также нарушается генеративная функция, что проявляется в нарушении последовательности процессов родовой деятельности. В целом, мозжечок оптимизирует отношения между сомой и вегетатикой.
Промежуточный мозг
Промежуточный мозг, включает в себя оба таламуса и гипоталамус. Промежуточный мозг интегрирует сенсорные, двигательные и вегетативные реакции для обеспечения целостной деятельности организма. Таламус.
Таламус (thalamus, лат. – зрительный бугор) – это не только зрительный бугор, как принято его называть. В таламусе сходятся афферентные импульсы не только от зрительных рецепторов, но и от всех остальных рецепторов (экстеро-, интеро-, и проприорецепторов), поэтому его называют коллектором (collector, лат. – собирающий) всех видов чувствительности. Таламус считается входными воротами и распределительным пунктом. В нём происходит обработка и интеграция всех сигналов, поступающих в кору от спинного, продолговатого, среднего мозга, мозжечка и базальных ядер головного мозга.
Таламус выполняет следующие функции:
1) интеграция различных видов чувствительности и их переключение на таламокортикальные пути;
2) организация врождённых форм поведения (инстинкты, влечения, эмоции);
3) анализ болевой чувствительности (высший центр боли).
Для выполнения этих функций в таламусе имеется около 120 ядер, каждое из которых связано со своей областью коры. Эти ядра классифицируются по разным признакам:
1) по морфологическим признакам ядра подразделяются на переднюю, медиальную и латеральную группы;
2) по функциональным признакам ядра бывают специфическими, ассоциативными и неспецифическими (Лоренте де Но).
Передняя группа ядер таламуса проецирует аксоны свих нейронов в поясную извилину коры, медиальная группа – в лобную долю; латеральная – в теменную, височную и затылочную доли.
К специфическим ядрам таламуса относятся медиальные и латеральные коленчатые тела, а также передние вентральные, медиальные, вентролатеральные, постлатеральные и постмедиальные ядра. Основной функционаьной единицей этих ядер являются релейные (переключающие) нейроны, которые получают импульсы с периферии от всех видов рецепторов. Далее обработанная информация от них направляется либо к ассоциативным ядрам таламуса, либо в кору – в строго определённую зону третьего и четвёртого слоя, т.е. и эти ядра и зоны коры, куда приходят нервные импульсы, имеют строгую соматотопическую локализацию.
Например, латеральные коленчатые тела получают импульсы от зрительных рецепторов, рецепторов глаз, верхнего двухолмия. Латеральные коленчатые тела обрабатывают эту информацию с помощью своих специфических нейронов (мало дендритов и длинный аксон), и далее нервные импульсы идут в затылочную долю коры (третий, четвёртый слои).
Ассоциативные ядра расположены в передних отделах таламуса. К ним относятся передние, медиодорзальные, латеродорзальные ядра и подушка. Эти ядра не связаны непосредственно с рецепторами. Они получают сигналы от специфических ядер и обработанную информацию отправляют в соответствующую ассоциативную зону коры.
Например, передние ядра связаны с поясной извилиной. Нейроны этих ядер имеют биполярное строение, бывают трёхотростчатые и мультиполярные, на них конвергируют импульсы различной модальности, т.е. они являются полисенсорными, в результате чего происходит интеграция полимодальных сигналов, которые далее поступают в ассоциативные зоны коры.
Большинство неспецифических ядер относится к РФ – срединный центр, парацентральные ядра, центральные медиальные, центральные латеральные и др. Их нейроны между собой связаны по ретикулярному типу и импульсы от них направляются не в определённую зону коры, а диффузно во все слои коры. К этим ядрам поступают импульсы от РФ ствола, гипоталамуса, лимбической системы, базальных ядер, специфических ядер таламуса. Возбуждение этих ядер приводит к формированию в коре веретёнообразных потенциалов действия, которые сопровождаются развитием сонного состояния.
Такая сложная связь таламуса позволяет ему участвовать в организации рефлексов: жевание, глотание, сосание, смех, причём эти реакции тесно интегрируются с вегетативными рефлексами.
При патологических процессах в таламусе возникают неукротимые таламические боли.
Гипоталамус.
Гипоталамус (hypothalamus, лат. – подбугорье) – это структура промежуточного мозга, входящая в лимбическую систему и связанная со спинным, продолговатым, средним мозгом, мостом, таламусом, подкорковыми ядрами и корой. К гипоталамусу относятся серый бугор, воронка с нейрогипофизом, сосцевидные тела. Морфологически в гипоталамусе выделяют 50 пар ядер, которые делятся на 5 групп:
1) передние;
2) средние;
3) задние;
4) преоптические;
5) наружные.
Ядра имеют богатое кровоснабжение. Например, на 1 мм2 площади гипоталамуса приходится 2500 капилляров, а в гиппокампе – 350. Некоторые ядра получают как собственное кровоснабжение, так и дублирующее из сосудов велизиевого круга. Эти капилляры имеют крупные поры и высокую проницаемость для белковых молекул, нуклеопротеидов, что объясняет чувствительность гипоталамуса к гуморальным веществам белковой природы, к токсинам, к нейровирусам. Гипоталамус созревает к 14 годам, когда заканчивает формироваться гипоталамо-гипофизарная система.
Гипоталамус выполняет следующие функции:
1) высший центр автономной нервной системы;
2) регуляция гомеостатических реакций;
3) регуляция эндокринной системы (через адено- и нейрогипофиз);
4) регуляция поведения человека: формирование эмоционального и мотивационного (motif, фр. – побудительная причина) поведения;
5) регуляция цикла сон-бодрствование.
6) интеграция соматических, эндокринных и вегетативных функций, а также их сопряжение с эмоциями и поведением человека;
Афферентные связи гипоталамус получает:
1) от таламуса;
2) от лимбической системы;
3) от подкорковых ядер;
4) от коры.
Таким образом, гипоталамус получает информацию от всех отделов мозга. На основе этой информации происходит интегрирование сигналов от указанных структур.
Эфферентные связи гипоталамус направляет:
1) к таламусу;
2) к ретикулярной формации ствола;
3) к вегетативным центрам ствола;
4) к спинному мозгу.
Гипоталамус и автономная нервная система.
Гипоталамус, являясь высшим центром автономной нервной системы, влияет на вегетативные функции организмы нервным и гуморальным путями.
При раздражении передней группы ядер гипоталамуса, то на периферии возникают реакции парасимпатического знака и выделяются нейросекреты (гормоны нейрогипофиза).
При раздражении средней группы ядер гипоталамуса, то возникает снижение тонуса симпатической нервной системы, и выделяются рилизинг-факторы (либерины и статины).
При раздражении задней группы ядер гипоталамуса, то на периферии развиваются реакции симпатического знака.
Это деление довольно условно, потому что все структуры гипоталамуса могут давать (в разной степени) как симпатические, так и парасимпатческие эффекты, т.е. это взаимодополняющие отношения.
Для регуляции вегетативных функций в гипоталамусе имеются следующие центры:
1) терморегуляции;
2) голода;
3) насыщения;
4) жажды;
5) полового поведения;
6) всех видов обмена веществ;
7) сна-бодрствования;
8) страха и ярости.
При возбуждении этих центров эфферентные импульсы от них направляются в центры ствола мозга, регулирующие вегетативные функции, а также на передний мозг и эндокринную систему.
Гипоталамус и эндокринная система.
Нейроны гипоталамуса обладают нейросекреторной функцией. Передняя группа ядер выделяет окситоцин и антидиуретический гормон, т.е. гипоталамус прямо, без посредников, регулирует деятельность почек и матки.
Связь гипоталамуса с аденогипофизом опосредуется через рилизинг-факторы (release, англ. – освобождение) (их выделяет средняя группа ядер). В гипоталамусе вырабатываются все либерины (libero, лат. – освобождать) (соматолиберин, пролактолиберин, тиролиберин, кортиколиберин, гонадолиберины (лю- и фоллиберин)) и 4 статина (statuo, лат. – останавливать) (соматостатин, меланостатин, пролактостатин, липостатин).
Нейроны срединной группы выполняют также детектирующую функцию, т.е. они реагируют на:
1) температуру крови;
2) осмотическое давление;
3) электролитный состав;
4) гормональный статус организма.
При повреждении этих «эндокринных» ядер гипоталамуса у детей наблюдается раннее половое созревание, а у взрослых – нарушение половая и менструальная функции.
Гипоталамус и эмоции.
Связь гипоталамуса и эмоций была открыта благодаря опытам Олдса и Дельгадо.
Олдс (1956) производил опыты с самораздражением: он вводил крысам электроды в различные структуры гипоталамуса. Затем животные выпускались в клетку, в которой находилась педаль, замыкающая электрическую цепь: стимулятор – электроды – педаль.
Если электроды были введены в структуры, формирующие положительные эмоции, то крыса, случайно нажимая на педаль, не отходила от неё и начинала нажимать её с частотой, достигающей два нажатия в секунду. Крыса, судя по факту самостимуляции, получает положительные эмоции – чувство «тихой радости».
Наоборот, когда Олдс вводил электроды в центр «отрицательных эмоций», крыса, единожды случайно нажав на педаль, убегала от неё, забивалась в дальний угол клетки и больше не подходила к педали, значит, она испытывала неприятные ощущения (отрицательные эмоции).
В дальнейшем Дельгадо вживлял электроды в положительные зоны гипоталамуса быка. На корриде (на виду у всех) этот разъярённый бык набрасывался на красный плащ тореро, но при включении стимуляции положительных зон гипоталамуса он внезапно останавливался, и его поведение указывало на полное отсутствие реакции ярости.
Возбуждение ядер передней группы гипоталамуса вызывает пассивно-оборонительные реакции: страх, ярость, гнев и неудовлетворение.
Раздражение задней группы ядер гипоталамуса вызывает симпатические эффекты и активную агрессивную реакцию, сопровождаемую экзофтальмом, расширением зрачка, увеличением артериального давления, сокращением желчного и мочевого пузыря.
Гипоталамус и регуляция цикла сон-бодрствование.
Задние ядра гипоталамуса поддерживают человека в состоянии бодрствования. При их повреждении наступает такое патологическое явление как летаргический сон, который продолжается месяцами и годами.
Передняя группа ядер гипоталамуса участвует в организации сна. Их стимуляция вызывает сон.
В гипоталамусе и в гипофизе имеются нейроны, вырабатывающие опиоидные вещества – эндорфины и энкефалины. Они обладают обезболивающим эффектом, а также подавляют стресс-реакцию.
Last modified: Friday, 3 January 2020, 10:34 AM